Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
Sci Adv ; 10(18): eadm8680, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701214

ABSTRACT

Gas and propane stoves emit nitrogen dioxide (NO2) pollution indoors, but the exposures of different U.S. demographic groups are unknown. We estimate NO2 exposure and health consequences using emissions and concentration measurements from >100 homes, a room-specific indoor air quality model, epidemiological risk parameters, and statistical sampling of housing characteristics and occupant behavior. Gas and propane stoves increase long-term NO2 exposure 4.0 parts per billion volume on average across the United States, 75% of the World Health Organization's exposure guideline. This increased exposure likely causes ~50,000 cases of current pediatric asthma from long-term NO2 exposure alone. Short-term NO2 exposure from typical gas stove use frequently exceeds both World Health Organization and U.S. Environmental Protection Agency benchmarks. People living in residences <800 ft2 in size incur four times more long-term NO2 exposure than people in residences >3000 ft2 in size; American Indian/Alaska Native and Black and Hispanic/Latino households incur 60 and 20% more NO2 exposure, respectively, than the national average.


Subject(s)
Air Pollution, Indoor , Nitrogen Dioxide , Propane , Nitrogen Dioxide/analysis , Humans , United States , Air Pollution, Indoor/analysis , Air Pollution, Indoor/adverse effects , Environmental Exposure/adverse effects , Housing , Cooking , Air Pollutants/analysis
2.
Allergy ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563695

ABSTRACT

The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.

4.
Article in English | MEDLINE | ID: mdl-38648975

ABSTRACT

Increased fossil fuel use has increased carbon dioxide concentrations leading to global warming and climate change with increased frequency and intensity of extreme weather events such as thunderstorms, wildfires, droughts, and heat waves. These changes increase the risk of adverse health effects for all human beings. However, these experiences do not affect everyone equally. Underserved communities, including people of color, the elderly, people living with chronic conditions, and socioeconomically disadvantaged groups, have greater vulnerability to the impacts of climate change. These vulnerabilities are a result of multiple factors such as disparities in health care, lower educational status, and systemic racism. These social inequities are exacerbated by extreme weather events, which act as threat multipliers increasing disparities in health outcomes. It is clear that without human action, these global temperatures will continue to increase to unbearable levels creating an existential crisis. There is now global consensus that climate change is caused by anthropogenic activity and that actions to mitigate and adapt to climate change are urgently needed. The 2015 Paris Accord was the first truly global commitment that set goals to limit further warming. It also aimed to implement equity in action, founded on the principle of common but differentiated responsibilities. Meeting these goals requires individual, community, organizational, national, and global cooperation. Health care professionals, often in the frontline with firsthand knowledge of the health impacts of climate change, can play a key role in advocating for just and equitable climate change adaptation and mitigation policies.

5.
Article in English | MEDLINE | ID: mdl-38670297

ABSTRACT

BACKGROUND: Cardiac allograft vasculopathy (CAV) remains the leading cause of long-term graft failure and mortality after heart transplantation. Effective preventive and treatment options are not available to date, largely because underlying mechanisms remain poorly understood. We studied the potential role of leukotriene B4 (LTB4), an inflammatory lipid mediator, in the development of CAV. METHODS: We used an established preclinical rat CAV model to study the role of LTB4 in CAV. We performed syngeneic and allogeneic orthotopic aortic transplantation, after which neointimal proliferation was quantified. Animals were then treated with Bestatin, an inhibitor of LTB4 synthesis, or vehicle control for 30 days post-transplant, and evidence of graft CAV was determined by histology. We also measured serial LTB4 levels in a cohort of 28 human heart transplant recipients with CAV, 17 matched transplant controls without CAV, and 20 healthy nontransplant controls. RESULTS: We showed that infiltration of the arterial wall with macrophages leads to neointimal thickening and a rise in serum LTB4 levels in our rat model of CAV. Inhibition of LTB4 production with the drug Bestatin prevents development of neointimal hyperplasia, suggesting that Bestatin may be effective therapy for CAV prevention. In a parallel study of heart transplant recipients, we found nonsignificantly elevated plasma LTB4 levels in patients with CAV, compared to patients without CAV and healthy, nontransplant controls. CONCLUSIONS: This study provides key evidence supporting the role of the inflammatory cytokine LTB4 as an important mediator of CAV development and provides preliminary data suggesting the clinical benefit of Bestatin for CAV prevention.

8.
Article in English | MEDLINE | ID: mdl-38548091

ABSTRACT

BACKGROUND: There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations. OBJECTIVE: We sought to identify metabolites unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort, the Boston Birth Cohort. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (n = 811). FA was diagnosed according to clinical symptoms consistent with an acute hypersensitivity reaction at food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined on the basis of physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders. RESULTS: During a mean ± standard deviation follow-up of 11.8 ± 5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (odds ratio [OR] = 0.65, 95% confidence interval [CI] = 0.48-0.87), and 1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR = 0.77; 95% CI = 0.66-0.90) were inversely associated with FA risk. Orotidine (OR = 4.73; 95% CI = 2.2-10.2) and 4-cholesten-3-one (OR = 0.52; 95% CI = 0.35-0.77) were the top 2 metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids. CONCLUSION: In this US multiethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA and/or asthma. These findings await further validation.

9.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456511

ABSTRACT

Understanding the immune responses to SARS-CoV-2 vaccination is critical to optimizing vaccination strategies for individuals with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here, we comprehensively analyzed innate and adaptive immune responses in 19 patients with SLE receiving a complete 2-dose Pfizer-BioNTech mRNA vaccine (BNT162b2) regimen compared with a control cohort of 56 healthy control (HC) volunteers. Patients with SLE exhibited impaired neutralizing antibody production and antigen-specific CD4+ and CD8+ T cell responses relative to HC. Interestingly, antibody responses were only altered in patients with SLE treated with immunosuppressive therapies, whereas impairment of antigen-specific CD4+ and CD8+ T cell numbers was independent of medication. Patients with SLE also displayed reduced levels of circulating CXC motif chemokine ligands, CXCL9, CXCL10, CXCL11, and IFN-γ after secondary vaccination as well as downregulation of gene expression pathways indicative of compromised innate immune responses. Single-cell RNA-Seq analysis reveals that patients with SLE showed reduced levels of a vaccine-inducible monocyte population characterized by overexpression of IFN-response transcription factors. Thus, although 2 doses of BNT162b2 induced relatively robust immune responses in patients with SLE, our data demonstrate impairment of both innate and adaptive immune responses relative to HC, highlighting a need for population-specific vaccination studies.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Humans , BNT162 Vaccine , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination
10.
Annu Rev Immunol ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360544

ABSTRACT

IgE-mediated food allergy (IgE-FA) occurs due to a breakdown in immune tolerance that leads to a detrimental type 2 helper T cell (TH2) adaptive immune response. While the processes governing this loss of tolerance are incompletely understood, several host-related and environmental factors impacting the risk of IgE-FA development have been identified. Mounting evidence supports the role of an impaired epithelial barrier in the development of IgE-FA, with exposure of allergens through damaged skin and gut epithelium leading to the aberrant production of alarmins and activation of TH2-type allergic inflammation. The treatment of IgE-FA has historically been avoidance with acute management of allergic reactions, but advances in allergen-specific immunotherapy and the development of biologics and other novel therapeutics are rapidly changing the landscape of food allergy treatment. Here, we discuss the pathogenesis and immunobiology of IgE-FA in addition to its diagnosis, prognosis, and treatment. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

11.
Allergy ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311978

ABSTRACT

Air pollution is one of the biggest environmental threats for asthma. Its impact is augmented by climate change. To inform the recommendations of the EAACI Guidelines on the environmental science for allergic diseases and asthma, a systematic review (SR) evaluated the impact on asthma-related outcomes of short-term exposure to outdoor air pollutants (PM2.5, PM10, NO2 , SO2 , O3 , and CO), heavy traffic, outdoor pesticides, and extreme temperatures. Additionally, the SR evaluated the impact of the efficacy of interventions reducing outdoor pollutants. The risk of bias was assessed using ROBINS-E tools and the certainty of the evidence by using GRADE. Short-term exposure to PM2.5, PM10, and NO2 probably increases the risk of asthma-related hospital admissions (HA) and emergency department (ED) visits (moderate certainty evidence). Exposure to heavy traffic may increase HA and deteriorate asthma control (low certainty evidence). Interventions reducing outdoor pollutants may reduce asthma exacerbations (low to very low certainty evidence). Exposure to fumigants may increase the risk of new-onset asthma in agricultural workers, while exposure to 1,3-dichloropropene may increase the risk of asthma-related ED visits (low certainty evidence). Heatwaves and cold spells may increase the risk of asthma-related ED visits and HA and asthma mortality (low certainty evidence).

12.
Allergy ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366695

ABSTRACT

Systematic review using GRADE of the impact of exposure to volatile organic compounds (VOCs), cleaning agents, mould/damp, pesticides on the risk of (i) new-onset asthma (incidence) and (ii) adverse asthma-related outcomes (impact). MEDLINE, EMBASE and Web of Science were searched for indoor pollutant exposure studies reporting on new-onset asthma and critical and important asthma-related outcomes. Ninety four studies were included: 11 for VOCs (7 for incidenceand 4 for impact), 25 for cleaning agents (7 for incidenceand 8 for impact), 48 for damp/mould (26 for incidence and 22 for impact) and 10 for pesticides (8 for incidence and 2 for impact). Exposure to damp/mould increases the risk of new-onset wheeze (moderate certainty evidence). Exposure to cleaning agents may be associated with a higher risk of new-onset asthma and with asthma severity (low level of certainty). Exposure to pesticides and VOCs may increase the risk of new-onset asthma (very low certainty evidence). The impact on asthma-related outcomes of all major indoor pollutants is uncertain. As the level of certainty is low or very low for most of the available evidence on the impact of indoor pollutants on asthma-related outcomes more rigorous research in the field is warranted.

13.
J Allergy Clin Immunol ; 153(2): 418-434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344970

ABSTRACT

BACKGROUND: Asthma and other atopic disorders can present with varying clinical phenotypes marked by differential metabolomic manifestations and enriched biological pathways. OBJECTIVE: We sought to identify these unique metabolomic profiles in atopy and asthma. METHODS: We analyzed baseline nonfasted plasma samples from a large multisite pediatric population of 470 children aged <13 years from 3 different sites in the United States and France. Atopy positivity (At+) was defined as skin prick test result of ≥3 mm and/or specific IgE ≥ 0.35 IU/mL and/or total IgE ≥ 173 IU/mL. Asthma positivity (As+) was based on physician diagnosis. The cohort was divided into 4 groups of varying combinations of asthma and atopy, and 6 pairwise analyses were conducted to best assess the differential metabolomic profiles between groups. RESULTS: Two hundred ten children were classified as At-As-, 42 as At+As-, 74 as At-As+, and 144 as At+As+. Untargeted global metabolomic profiles were generated through ultra-high-performance liquid chromatography-tandem mass spectroscopy. We applied 2 independent machine learning classifiers and short-listed 362 metabolites as discriminant features. Our analysis showed the most diverse metabolomic profile in the At+As+/At-As- comparison, followed by the At-As+/At-As- comparison, indicating that asthma is the most discriminant condition associated with metabolomic changes. At+As+ metabolomic profiles were characterized by higher levels of bile acids, sphingolipids, and phospholipids, and lower levels of polyamine, tryptophan, and gamma-glutamyl amino acids. CONCLUSION: The At+As+ phenotype displays a distinct metabolomic profile suggesting underlying mechanisms such as modulation of host-pathogen and gut microbiota interactions, epigenetic changes in T-cell differentiation, and lower antioxidant properties of the airway epithelium.


Subject(s)
Asthma , Hypersensitivity, Immediate , Child , Humans , Asthma/epidemiology , Metabolomics/methods , Metabolome , Immunoglobulin E
14.
J Allergy Clin Immunol ; 153(5): 1194-1205, 2024 May.
Article in English | MEDLINE | ID: mdl-38309598

ABSTRACT

Climate change is not just jeopardizing the health of our planet but is also increasingly affecting our immune health. There is an expanding body of evidence that climate-related exposures such as air pollution, heat, wildfires, extreme weather events, and biodiversity loss significantly disrupt the functioning of the human immune system. These exposures manifest in a broad range of stimuli, including antigens, allergens, heat stress, pollutants, microbiota changes, and other toxic substances. Such exposures pose a direct and indirect threat to our body's primary line of defense, the epithelial barrier, affecting its physical integrity and functional efficacy. Furthermore, these climate-related environmental stressors can hyperstimulate the innate immune system and influence adaptive immunity-notably, in terms of developing and preserving immune tolerance. The loss or failure of immune tolerance can instigate a wide spectrum of noncommunicable diseases such as autoimmune conditions, allergy, respiratory illnesses, metabolic diseases, obesity, and others. As new evidence unfolds, there is a need for additional research in climate change and immunology that covers diverse environments in different global settings and uses modern biologic and epidemiologic tools.


Subject(s)
Climate Change , Humans , Animals , Immune Tolerance , Immunity, Innate , Environmental Exposure/adverse effects , Adaptive Immunity
15.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38227765

ABSTRACT

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Subject(s)
Particulate Matter , Vehicle Emissions , Humans , Particulate Matter/adverse effects , Vehicle Emissions/toxicity , Tight Junctions , Allergens , Oxidative Stress , Epithelial Cells
16.
Ann Allergy Asthma Immunol ; 132(4): 426-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253122

ABSTRACT

Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms, variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Exposure to air pollution has been linked to an increased risk of asthma development and exacerbation. This review aims to comprehensively summarize recent data on the impact of air pollution on asthma development and exacerbation. Specifically, we reviewed the effects of air pollution on the pathogenic pathways of asthma, including type 2 and non-type 2 inflammatory responses, and airway epithelial barrier dysfunction. Air pollution promotes the release of epithelial cytokines, driving TH2 responses, and induces oxidative stress and the production of proinflammatory cytokines. The enhanced type 2 inflammation, furthered by air pollution-induced dysfunction of the airway epithelial barrier, may be associated with the exacerbation of asthma. Disruption of the TH17/regulatory T cell balance by air pollutants is also related to asthma exacerbation. As the effects of air pollution exposure may accumulate over time, with potentially stronger impacts in the development of asthma during certain sensitive life periods, we also reviewed the effects of air pollution on asthma across the lifespan. Future research is needed to better characterize the sensitive period contributing to the development of air pollution-induced asthma and to map air pollution-associated epigenetic biomarkers contributing to the epigenetic ages onto asthma-related genes.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/etiology , Asthma/complications , Air Pollutants/adverse effects , Air Pollutants/analysis , Inflammation , Cytokines
17.
Article in English | MEDLINE | ID: mdl-38253125

ABSTRACT

The fact that genetic and environmental factors could trigger disruption of the epithelial barrier and subsequently initiate a TH2 inflammatory cascade conversely proposes that protecting the same barrier and promoting adequate interactions with other organs, such as the gut, may be crucial for lowering the risk and preventing atopic diseases, particularly, food allergies. In this review, we provide an overview of structural characteristics that support the epithelial barrier hypothesis in patients with atopic dermatitis, including the most relevant filaggrin gene mutations, the recent discovery of the role of the transient receptor potential vanilloid 1, and the role involvement of the microbiome in healthy and damaged skin. We present experimental and human studies that support the mechanisms of allergen penetration, particularly the dual allergen exposure and the outside-in, inside-out, and outside-inside-outside hypotheses. We discuss classic skin-targeted therapies for food allergy prevention, including moisturizers, steroids, and topical calcineurin inhibitors, along with pioneering trials proposed to change their current use (Prevention of Allergy via Cutaneous Intervention and Stopping Eczema and ALlergy). We provide an overview of the novel therapies that enhance the skin barrier, such as probiotics and prebiotics topical application, read-through drugs, direct and indirect FLG replacement, and interleukin and janus kinases inhibitors. Last, we discuss the newer strategies for preventing and treating food allergies in the form of epicutaneous immunotherapy and the experimental use of single-dose of adeno-associated virus vector gene immunotherapy.

19.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172101

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Subject(s)
Body Fluids , COVID-19 , Female , Humans , SARS-CoV-2 , COVID-19/complications , B-Lymphocytes , Disease Progression , Phenotype
20.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-35547855

ABSTRACT

Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...